3.4.25 \(\int (a+a \cos (c+d x))^3 (A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^5(c+d x) \, dx\) [325]

3.4.25.1 Optimal result
3.4.25.2 Mathematica [A] (verified)
3.4.25.3 Rubi [A] (verified)
3.4.25.4 Maple [A] (verified)
3.4.25.5 Fricas [A] (verification not implemented)
3.4.25.6 Sympy [F(-1)]
3.4.25.7 Maxima [B] (verification not implemented)
3.4.25.8 Giac [A] (verification not implemented)
3.4.25.9 Mupad [B] (verification not implemented)

3.4.25.1 Optimal result

Integrand size = 41, antiderivative size = 183 \[ \int (a+a \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=a^3 C x+\frac {a^3 (15 A+20 B+28 C) \text {arctanh}(\sin (c+d x))}{8 d}+\frac {5 a^3 (3 A+4 (B+C)) \tan (c+d x)}{8 d}+\frac {(15 A+20 B+12 C) \left (a^3+a^3 \cos (c+d x)\right ) \sec (c+d x) \tan (c+d x)}{24 d}+\frac {(3 A+4 B) \left (a^2+a^2 \cos (c+d x)\right )^2 \sec ^2(c+d x) \tan (c+d x)}{12 a d}+\frac {A (a+a \cos (c+d x))^3 \sec ^3(c+d x) \tan (c+d x)}{4 d} \]

output
a^3*C*x+1/8*a^3*(15*A+20*B+28*C)*arctanh(sin(d*x+c))/d+5/8*a^3*(3*A+4*B+4* 
C)*tan(d*x+c)/d+1/24*(15*A+20*B+12*C)*(a^3+a^3*cos(d*x+c))*sec(d*x+c)*tan( 
d*x+c)/d+1/12*(3*A+4*B)*(a^2+a^2*cos(d*x+c))^2*sec(d*x+c)^2*tan(d*x+c)/a/d 
+1/4*A*(a+a*cos(d*x+c))^3*sec(d*x+c)^3*tan(d*x+c)/d
 
3.4.25.2 Mathematica [A] (verified)

Time = 3.48 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.54 \[ \int (a+a \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\frac {a^3 \left (24 C d x+(45 A+60 B+84 C) \text {arctanh}(\sin (c+d x))+3 \left (8 (4 A+4 B+3 C)+(15 A+12 B+4 C) \sec (c+d x)+2 A \sec ^3(c+d x)\right ) \tan (c+d x)+8 (3 A+B) \tan ^3(c+d x)\right )}{24 d} \]

input
Integrate[(a + a*Cos[c + d*x])^3*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*S 
ec[c + d*x]^5,x]
 
output
(a^3*(24*C*d*x + (45*A + 60*B + 84*C)*ArcTanh[Sin[c + d*x]] + 3*(8*(4*A + 
4*B + 3*C) + (15*A + 12*B + 4*C)*Sec[c + d*x] + 2*A*Sec[c + d*x]^3)*Tan[c 
+ d*x] + 8*(3*A + B)*Tan[c + d*x]^3))/(24*d)
 
3.4.25.3 Rubi [A] (verified)

Time = 1.42 (sec) , antiderivative size = 194, normalized size of antiderivative = 1.06, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.366, Rules used = {3042, 3522, 3042, 3454, 3042, 3454, 27, 3042, 3447, 3042, 3500, 3042, 3214, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^5(c+d x) (a \cos (c+d x)+a)^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^3 \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^5}dx\)

\(\Big \downarrow \) 3522

\(\displaystyle \frac {\int (\cos (c+d x) a+a)^3 (a (3 A+4 B)+4 a C \cos (c+d x)) \sec ^4(c+d x)dx}{4 a}+\frac {A \tan (c+d x) \sec ^3(c+d x) (a \cos (c+d x)+a)^3}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^3 \left (a (3 A+4 B)+4 a C \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^4}dx}{4 a}+\frac {A \tan (c+d x) \sec ^3(c+d x) (a \cos (c+d x)+a)^3}{4 d}\)

\(\Big \downarrow \) 3454

\(\displaystyle \frac {\frac {1}{3} \int (\cos (c+d x) a+a)^2 \left ((15 A+20 B+12 C) a^2+12 C \cos (c+d x) a^2\right ) \sec ^3(c+d x)dx+\frac {(3 A+4 B) \tan (c+d x) \sec ^2(c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{3 d}}{4 a}+\frac {A \tan (c+d x) \sec ^3(c+d x) (a \cos (c+d x)+a)^3}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2 \left ((15 A+20 B+12 C) a^2+12 C \sin \left (c+d x+\frac {\pi }{2}\right ) a^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^3}dx+\frac {(3 A+4 B) \tan (c+d x) \sec ^2(c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{3 d}}{4 a}+\frac {A \tan (c+d x) \sec ^3(c+d x) (a \cos (c+d x)+a)^3}{4 d}\)

\(\Big \downarrow \) 3454

\(\displaystyle \frac {\frac {1}{3} \left (\frac {1}{2} \int 3 (\cos (c+d x) a+a) \left (5 (3 A+4 (B+C)) a^3+8 C \cos (c+d x) a^3\right ) \sec ^2(c+d x)dx+\frac {(15 A+20 B+12 C) \tan (c+d x) \sec (c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{2 d}\right )+\frac {(3 A+4 B) \tan (c+d x) \sec ^2(c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{3 d}}{4 a}+\frac {A \tan (c+d x) \sec ^3(c+d x) (a \cos (c+d x)+a)^3}{4 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{3} \left (\frac {3}{2} \int (\cos (c+d x) a+a) \left (5 (3 A+4 (B+C)) a^3+8 C \cos (c+d x) a^3\right ) \sec ^2(c+d x)dx+\frac {(15 A+20 B+12 C) \tan (c+d x) \sec (c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{2 d}\right )+\frac {(3 A+4 B) \tan (c+d x) \sec ^2(c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{3 d}}{4 a}+\frac {A \tan (c+d x) \sec ^3(c+d x) (a \cos (c+d x)+a)^3}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \left (\frac {3}{2} \int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right ) \left (5 (3 A+4 (B+C)) a^3+8 C \sin \left (c+d x+\frac {\pi }{2}\right ) a^3\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx+\frac {(15 A+20 B+12 C) \tan (c+d x) \sec (c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{2 d}\right )+\frac {(3 A+4 B) \tan (c+d x) \sec ^2(c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{3 d}}{4 a}+\frac {A \tan (c+d x) \sec ^3(c+d x) (a \cos (c+d x)+a)^3}{4 d}\)

\(\Big \downarrow \) 3447

\(\displaystyle \frac {\frac {1}{3} \left (\frac {3}{2} \int \left (8 C \cos ^2(c+d x) a^4+5 (3 A+4 (B+C)) a^4+\left (8 C a^4+5 (3 A+4 (B+C)) a^4\right ) \cos (c+d x)\right ) \sec ^2(c+d x)dx+\frac {(15 A+20 B+12 C) \tan (c+d x) \sec (c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{2 d}\right )+\frac {(3 A+4 B) \tan (c+d x) \sec ^2(c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{3 d}}{4 a}+\frac {A \tan (c+d x) \sec ^3(c+d x) (a \cos (c+d x)+a)^3}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \left (\frac {3}{2} \int \frac {8 C \sin \left (c+d x+\frac {\pi }{2}\right )^2 a^4+5 (3 A+4 (B+C)) a^4+\left (8 C a^4+5 (3 A+4 (B+C)) a^4\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx+\frac {(15 A+20 B+12 C) \tan (c+d x) \sec (c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{2 d}\right )+\frac {(3 A+4 B) \tan (c+d x) \sec ^2(c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{3 d}}{4 a}+\frac {A \tan (c+d x) \sec ^3(c+d x) (a \cos (c+d x)+a)^3}{4 d}\)

\(\Big \downarrow \) 3500

\(\displaystyle \frac {\frac {1}{3} \left (\frac {3}{2} \left (\int \left ((15 A+20 B+28 C) a^4+8 C \cos (c+d x) a^4\right ) \sec (c+d x)dx+\frac {5 a^4 (3 A+4 (B+C)) \tan (c+d x)}{d}\right )+\frac {(15 A+20 B+12 C) \tan (c+d x) \sec (c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{2 d}\right )+\frac {(3 A+4 B) \tan (c+d x) \sec ^2(c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{3 d}}{4 a}+\frac {A \tan (c+d x) \sec ^3(c+d x) (a \cos (c+d x)+a)^3}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \left (\frac {3}{2} \left (\int \frac {(15 A+20 B+28 C) a^4+8 C \sin \left (c+d x+\frac {\pi }{2}\right ) a^4}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {5 a^4 (3 A+4 (B+C)) \tan (c+d x)}{d}\right )+\frac {(15 A+20 B+12 C) \tan (c+d x) \sec (c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{2 d}\right )+\frac {(3 A+4 B) \tan (c+d x) \sec ^2(c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{3 d}}{4 a}+\frac {A \tan (c+d x) \sec ^3(c+d x) (a \cos (c+d x)+a)^3}{4 d}\)

\(\Big \downarrow \) 3214

\(\displaystyle \frac {\frac {1}{3} \left (\frac {3}{2} \left (a^4 (15 A+20 B+28 C) \int \sec (c+d x)dx+\frac {5 a^4 (3 A+4 (B+C)) \tan (c+d x)}{d}+8 a^4 C x\right )+\frac {(15 A+20 B+12 C) \tan (c+d x) \sec (c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{2 d}\right )+\frac {(3 A+4 B) \tan (c+d x) \sec ^2(c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{3 d}}{4 a}+\frac {A \tan (c+d x) \sec ^3(c+d x) (a \cos (c+d x)+a)^3}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \left (\frac {3}{2} \left (a^4 (15 A+20 B+28 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+\frac {5 a^4 (3 A+4 (B+C)) \tan (c+d x)}{d}+8 a^4 C x\right )+\frac {(15 A+20 B+12 C) \tan (c+d x) \sec (c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{2 d}\right )+\frac {(3 A+4 B) \tan (c+d x) \sec ^2(c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{3 d}}{4 a}+\frac {A \tan (c+d x) \sec ^3(c+d x) (a \cos (c+d x)+a)^3}{4 d}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {\frac {1}{3} \left (\frac {3}{2} \left (\frac {a^4 (15 A+20 B+28 C) \text {arctanh}(\sin (c+d x))}{d}+\frac {5 a^4 (3 A+4 (B+C)) \tan (c+d x)}{d}+8 a^4 C x\right )+\frac {(15 A+20 B+12 C) \tan (c+d x) \sec (c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{2 d}\right )+\frac {(3 A+4 B) \tan (c+d x) \sec ^2(c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{3 d}}{4 a}+\frac {A \tan (c+d x) \sec ^3(c+d x) (a \cos (c+d x)+a)^3}{4 d}\)

input
Int[(a + a*Cos[c + d*x])^3*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + 
 d*x]^5,x]
 
output
(A*(a + a*Cos[c + d*x])^3*Sec[c + d*x]^3*Tan[c + d*x])/(4*d) + (((3*A + 4* 
B)*(a^2 + a^2*Cos[c + d*x])^2*Sec[c + d*x]^2*Tan[c + d*x])/(3*d) + (((15*A 
 + 20*B + 12*C)*(a^4 + a^4*Cos[c + d*x])*Sec[c + d*x]*Tan[c + d*x])/(2*d) 
+ (3*(8*a^4*C*x + (a^4*(15*A + 20*B + 28*C)*ArcTanh[Sin[c + d*x]])/d + (5* 
a^4*(3*A + 4*(B + C))*Tan[c + d*x])/d))/2)/3)/(4*a)
 

3.4.25.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3214
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_. 
)*(x_)]), x_Symbol] :> Simp[b*(x/d), x] - Simp[(b*c - a*d)/d   Int[1/(c + d 
*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
 

rule 3447
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a 
 + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x]^2), 
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
 

rule 3454
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[ 
e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Simp[b/(d*(n + 1)*(b*c + 
 a*d))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp 
[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n + 1) - B 
*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
&& GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0 
])
 

rule 3500
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 
 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A 
*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 

rule 3522
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - 
d^2))), x] + Simp[1/(b*d*(n + 1)*(c^2 - d^2))   Int[(a + b*Sin[e + f*x])^m* 
(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + (c*C - B*d)*( 
a*c*m + b*d*(n + 1)) + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2* 
(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, 
 x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ 
[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
3.4.25.4 Maple [A] (verified)

Time = 9.66 (sec) , antiderivative size = 213, normalized size of antiderivative = 1.16

method result size
parts \(\frac {A \,a^{3} \left (-\left (-\frac {\left (\sec ^{3}\left (d x +c \right )\right )}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )}{d}-\frac {\left (3 A \,a^{3}+B \,a^{3}\right ) \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )}{d}+\frac {\left (B \,a^{3}+3 C \,a^{3}\right ) \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}+\frac {\left (A \,a^{3}+3 B \,a^{3}+3 C \,a^{3}\right ) \tan \left (d x +c \right )}{d}+\frac {\left (3 A \,a^{3}+3 B \,a^{3}+C \,a^{3}\right ) \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}+\frac {C \,a^{3} \left (d x +c \right )}{d}\) \(213\)
parallelrisch \(\frac {23 a^{3} \left (-\frac {30 \left (A +\frac {4 B}{3}+\frac {28 C}{15}\right ) \left (\frac {3}{4}+\frac {\cos \left (4 d x +4 c \right )}{4}+\cos \left (2 d x +2 c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{23}+\frac {30 \left (A +\frac {4 B}{3}+\frac {28 C}{15}\right ) \left (\frac {3}{4}+\frac {\cos \left (4 d x +4 c \right )}{4}+\cos \left (2 d x +2 c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{23}+\frac {16 d x C \cos \left (2 d x +2 c \right )}{23}+\frac {4 d x C \cos \left (4 d x +4 c \right )}{23}+\frac {8 \left (\frac {13 B}{3}+3 C +5 A \right ) \sin \left (2 d x +2 c \right )}{23}+\frac {\left (4 C +15 A +12 B \right ) \sin \left (3 d x +3 c \right )}{23}+\frac {4 \left (\frac {11 B}{3}+3 A +3 C \right ) \sin \left (4 d x +4 c \right )}{23}+\left (\frac {4 C}{23}+\frac {12 B}{23}+A \right ) \sin \left (d x +c \right )+\frac {12 d x C}{23}\right )}{4 d \left (\cos \left (4 d x +4 c \right )+4 \cos \left (2 d x +2 c \right )+3\right )}\) \(233\)
derivativedivides \(\frac {A \,a^{3} \tan \left (d x +c \right )+B \,a^{3} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+C \,a^{3} \left (d x +c \right )+3 A \,a^{3} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+3 B \,a^{3} \tan \left (d x +c \right )+3 C \,a^{3} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )-3 A \,a^{3} \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )+3 B \,a^{3} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+3 C \,a^{3} \tan \left (d x +c \right )+A \,a^{3} \left (-\left (-\frac {\left (\sec ^{3}\left (d x +c \right )\right )}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )-B \,a^{3} \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )+C \,a^{3} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}\) \(297\)
default \(\frac {A \,a^{3} \tan \left (d x +c \right )+B \,a^{3} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+C \,a^{3} \left (d x +c \right )+3 A \,a^{3} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+3 B \,a^{3} \tan \left (d x +c \right )+3 C \,a^{3} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )-3 A \,a^{3} \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )+3 B \,a^{3} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+3 C \,a^{3} \tan \left (d x +c \right )+A \,a^{3} \left (-\left (-\frac {\left (\sec ^{3}\left (d x +c \right )\right )}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )-B \,a^{3} \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )+C \,a^{3} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}\) \(297\)
risch \(a^{3} C x -\frac {i a^{3} \left (45 A \,{\mathrm e}^{7 i \left (d x +c \right )}+36 B \,{\mathrm e}^{7 i \left (d x +c \right )}+12 C \,{\mathrm e}^{7 i \left (d x +c \right )}-24 A \,{\mathrm e}^{6 i \left (d x +c \right )}-72 B \,{\mathrm e}^{6 i \left (d x +c \right )}-72 C \,{\mathrm e}^{6 i \left (d x +c \right )}+69 A \,{\mathrm e}^{5 i \left (d x +c \right )}+36 B \,{\mathrm e}^{5 i \left (d x +c \right )}+12 C \,{\mathrm e}^{5 i \left (d x +c \right )}-216 A \,{\mathrm e}^{4 i \left (d x +c \right )}-264 B \,{\mathrm e}^{4 i \left (d x +c \right )}-216 C \,{\mathrm e}^{4 i \left (d x +c \right )}-69 A \,{\mathrm e}^{3 i \left (d x +c \right )}-36 B \,{\mathrm e}^{3 i \left (d x +c \right )}-12 C \,{\mathrm e}^{3 i \left (d x +c \right )}-264 A \,{\mathrm e}^{2 i \left (d x +c \right )}-280 B \,{\mathrm e}^{2 i \left (d x +c \right )}-216 C \,{\mathrm e}^{2 i \left (d x +c \right )}-45 A \,{\mathrm e}^{i \left (d x +c \right )}-36 B \,{\mathrm e}^{i \left (d x +c \right )}-12 C \,{\mathrm e}^{i \left (d x +c \right )}-72 A -88 B -72 C \right )}{12 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{4}}+\frac {15 A \,a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{8 d}+\frac {5 B \,a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{2 d}+\frac {7 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) C}{2 d}-\frac {15 A \,a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{8 d}-\frac {5 B \,a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{2 d}-\frac {7 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) C}{2 d}\) \(424\)

input
int((a+cos(d*x+c)*a)^3*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x,meth 
od=_RETURNVERBOSE)
 
output
A*a^3/d*(-(-1/4*sec(d*x+c)^3-3/8*sec(d*x+c))*tan(d*x+c)+3/8*ln(sec(d*x+c)+ 
tan(d*x+c)))-(3*A*a^3+B*a^3)/d*(-2/3-1/3*sec(d*x+c)^2)*tan(d*x+c)+(B*a^3+3 
*C*a^3)/d*ln(sec(d*x+c)+tan(d*x+c))+(A*a^3+3*B*a^3+3*C*a^3)/d*tan(d*x+c)+( 
3*A*a^3+3*B*a^3+C*a^3)/d*(1/2*sec(d*x+c)*tan(d*x+c)+1/2*ln(sec(d*x+c)+tan( 
d*x+c)))+C*a^3/d*(d*x+c)
 
3.4.25.5 Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 173, normalized size of antiderivative = 0.95 \[ \int (a+a \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\frac {48 \, C a^{3} d x \cos \left (d x + c\right )^{4} + 3 \, {\left (15 \, A + 20 \, B + 28 \, C\right )} a^{3} \cos \left (d x + c\right )^{4} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, {\left (15 \, A + 20 \, B + 28 \, C\right )} a^{3} \cos \left (d x + c\right )^{4} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (8 \, {\left (9 \, A + 11 \, B + 9 \, C\right )} a^{3} \cos \left (d x + c\right )^{3} + 3 \, {\left (15 \, A + 12 \, B + 4 \, C\right )} a^{3} \cos \left (d x + c\right )^{2} + 8 \, {\left (3 \, A + B\right )} a^{3} \cos \left (d x + c\right ) + 6 \, A a^{3}\right )} \sin \left (d x + c\right )}{48 \, d \cos \left (d x + c\right )^{4}} \]

input
integrate((a+a*cos(d*x+c))^3*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5, 
x, algorithm="fricas")
 
output
1/48*(48*C*a^3*d*x*cos(d*x + c)^4 + 3*(15*A + 20*B + 28*C)*a^3*cos(d*x + c 
)^4*log(sin(d*x + c) + 1) - 3*(15*A + 20*B + 28*C)*a^3*cos(d*x + c)^4*log( 
-sin(d*x + c) + 1) + 2*(8*(9*A + 11*B + 9*C)*a^3*cos(d*x + c)^3 + 3*(15*A 
+ 12*B + 4*C)*a^3*cos(d*x + c)^2 + 8*(3*A + B)*a^3*cos(d*x + c) + 6*A*a^3) 
*sin(d*x + c))/(d*cos(d*x + c)^4)
 
3.4.25.6 Sympy [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\text {Timed out} \]

input
integrate((a+a*cos(d*x+c))**3*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)* 
*5,x)
 
output
Timed out
 
3.4.25.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 366 vs. \(2 (174) = 348\).

Time = 0.20 (sec) , antiderivative size = 366, normalized size of antiderivative = 2.00 \[ \int (a+a \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\frac {48 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} A a^{3} + 16 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} B a^{3} + 48 \, {\left (d x + c\right )} C a^{3} - 3 \, A a^{3} {\left (\frac {2 \, {\left (3 \, \sin \left (d x + c\right )^{3} - 5 \, \sin \left (d x + c\right )\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{2} + 1} - 3 \, \log \left (\sin \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 36 \, A a^{3} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 36 \, B a^{3} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 12 \, C a^{3} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 24 \, B a^{3} {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 72 \, C a^{3} {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 48 \, A a^{3} \tan \left (d x + c\right ) + 144 \, B a^{3} \tan \left (d x + c\right ) + 144 \, C a^{3} \tan \left (d x + c\right )}{48 \, d} \]

input
integrate((a+a*cos(d*x+c))^3*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5, 
x, algorithm="maxima")
 
output
1/48*(48*(tan(d*x + c)^3 + 3*tan(d*x + c))*A*a^3 + 16*(tan(d*x + c)^3 + 3* 
tan(d*x + c))*B*a^3 + 48*(d*x + c)*C*a^3 - 3*A*a^3*(2*(3*sin(d*x + c)^3 - 
5*sin(d*x + c))/(sin(d*x + c)^4 - 2*sin(d*x + c)^2 + 1) - 3*log(sin(d*x + 
c) + 1) + 3*log(sin(d*x + c) - 1)) - 36*A*a^3*(2*sin(d*x + c)/(sin(d*x + c 
)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) - 36*B*a^3*(2*si 
n(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) 
 - 1)) - 12*C*a^3*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) 
+ 1) + log(sin(d*x + c) - 1)) + 24*B*a^3*(log(sin(d*x + c) + 1) - log(sin( 
d*x + c) - 1)) + 72*C*a^3*(log(sin(d*x + c) + 1) - log(sin(d*x + c) - 1)) 
+ 48*A*a^3*tan(d*x + c) + 144*B*a^3*tan(d*x + c) + 144*C*a^3*tan(d*x + c)) 
/d
 
3.4.25.8 Giac [A] (verification not implemented)

Time = 0.38 (sec) , antiderivative size = 301, normalized size of antiderivative = 1.64 \[ \int (a+a \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\frac {24 \, {\left (d x + c\right )} C a^{3} + 3 \, {\left (15 \, A a^{3} + 20 \, B a^{3} + 28 \, C a^{3}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, {\left (15 \, A a^{3} + 20 \, B a^{3} + 28 \, C a^{3}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (45 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 60 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 60 \, C a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 165 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 220 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 204 \, C a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 219 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 292 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 228 \, C a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 147 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 132 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 84 \, C a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{4}}}{24 \, d} \]

input
integrate((a+a*cos(d*x+c))^3*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5, 
x, algorithm="giac")
 
output
1/24*(24*(d*x + c)*C*a^3 + 3*(15*A*a^3 + 20*B*a^3 + 28*C*a^3)*log(abs(tan( 
1/2*d*x + 1/2*c) + 1)) - 3*(15*A*a^3 + 20*B*a^3 + 28*C*a^3)*log(abs(tan(1/ 
2*d*x + 1/2*c) - 1)) - 2*(45*A*a^3*tan(1/2*d*x + 1/2*c)^7 + 60*B*a^3*tan(1 
/2*d*x + 1/2*c)^7 + 60*C*a^3*tan(1/2*d*x + 1/2*c)^7 - 165*A*a^3*tan(1/2*d* 
x + 1/2*c)^5 - 220*B*a^3*tan(1/2*d*x + 1/2*c)^5 - 204*C*a^3*tan(1/2*d*x + 
1/2*c)^5 + 219*A*a^3*tan(1/2*d*x + 1/2*c)^3 + 292*B*a^3*tan(1/2*d*x + 1/2* 
c)^3 + 228*C*a^3*tan(1/2*d*x + 1/2*c)^3 - 147*A*a^3*tan(1/2*d*x + 1/2*c) - 
 132*B*a^3*tan(1/2*d*x + 1/2*c) - 84*C*a^3*tan(1/2*d*x + 1/2*c))/(tan(1/2* 
d*x + 1/2*c)^2 - 1)^4)/d
 
3.4.25.9 Mupad [B] (verification not implemented)

Time = 3.41 (sec) , antiderivative size = 636, normalized size of antiderivative = 3.48 \[ \int (a+a \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\frac {\frac {3\,C\,a^3\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{4}-\frac {B\,a^3\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,1{}\mathrm {i}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,15{}\mathrm {i}}{8}-\frac {A\,a^3\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,1{}\mathrm {i}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,45{}\mathrm {i}}{32}-\frac {C\,a^3\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,1{}\mathrm {i}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,21{}\mathrm {i}}{8}+\frac {5\,A\,a^3\,\sin \left (2\,c+2\,d\,x\right )}{4}+\frac {15\,A\,a^3\,\sin \left (3\,c+3\,d\,x\right )}{32}+\frac {3\,A\,a^3\,\sin \left (4\,c+4\,d\,x\right )}{8}+\frac {13\,B\,a^3\,\sin \left (2\,c+2\,d\,x\right )}{12}+\frac {3\,B\,a^3\,\sin \left (3\,c+3\,d\,x\right )}{8}+\frac {11\,B\,a^3\,\sin \left (4\,c+4\,d\,x\right )}{24}+\frac {3\,C\,a^3\,\sin \left (2\,c+2\,d\,x\right )}{4}+\frac {C\,a^3\,\sin \left (3\,c+3\,d\,x\right )}{8}+\frac {3\,C\,a^3\,\sin \left (4\,c+4\,d\,x\right )}{8}+\frac {23\,A\,a^3\,\sin \left (c+d\,x\right )}{32}+\frac {3\,B\,a^3\,\sin \left (c+d\,x\right )}{8}+\frac {C\,a^3\,\sin \left (c+d\,x\right )}{8}-\frac {A\,a^3\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,1{}\mathrm {i}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,\cos \left (2\,c+2\,d\,x\right )\,15{}\mathrm {i}}{8}-\frac {A\,a^3\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,1{}\mathrm {i}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,\cos \left (4\,c+4\,d\,x\right )\,15{}\mathrm {i}}{32}-\frac {B\,a^3\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,1{}\mathrm {i}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,\cos \left (2\,c+2\,d\,x\right )\,5{}\mathrm {i}}{2}-\frac {B\,a^3\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,1{}\mathrm {i}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,\cos \left (4\,c+4\,d\,x\right )\,5{}\mathrm {i}}{8}+C\,a^3\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,\cos \left (2\,c+2\,d\,x\right )+\frac {C\,a^3\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,\cos \left (4\,c+4\,d\,x\right )}{4}-\frac {C\,a^3\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,1{}\mathrm {i}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,\cos \left (2\,c+2\,d\,x\right )\,7{}\mathrm {i}}{2}-\frac {C\,a^3\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,1{}\mathrm {i}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,\cos \left (4\,c+4\,d\,x\right )\,7{}\mathrm {i}}{8}}{d\,\left (\frac {\cos \left (2\,c+2\,d\,x\right )}{2}+\frac {\cos \left (4\,c+4\,d\,x\right )}{8}+\frac {3}{8}\right )} \]

input
int(((a + a*cos(c + d*x))^3*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c 
 + d*x)^5,x)
 
output
((3*C*a^3*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/4 - (B*a^3*atan((si 
n(c/2 + (d*x)/2)*1i)/cos(c/2 + (d*x)/2))*15i)/8 - (A*a^3*atan((sin(c/2 + ( 
d*x)/2)*1i)/cos(c/2 + (d*x)/2))*45i)/32 - (C*a^3*atan((sin(c/2 + (d*x)/2)* 
1i)/cos(c/2 + (d*x)/2))*21i)/8 + (5*A*a^3*sin(2*c + 2*d*x))/4 + (15*A*a^3* 
sin(3*c + 3*d*x))/32 + (3*A*a^3*sin(4*c + 4*d*x))/8 + (13*B*a^3*sin(2*c + 
2*d*x))/12 + (3*B*a^3*sin(3*c + 3*d*x))/8 + (11*B*a^3*sin(4*c + 4*d*x))/24 
 + (3*C*a^3*sin(2*c + 2*d*x))/4 + (C*a^3*sin(3*c + 3*d*x))/8 + (3*C*a^3*si 
n(4*c + 4*d*x))/8 + (23*A*a^3*sin(c + d*x))/32 + (3*B*a^3*sin(c + d*x))/8 
+ (C*a^3*sin(c + d*x))/8 - (A*a^3*atan((sin(c/2 + (d*x)/2)*1i)/cos(c/2 + ( 
d*x)/2))*cos(2*c + 2*d*x)*15i)/8 - (A*a^3*atan((sin(c/2 + (d*x)/2)*1i)/cos 
(c/2 + (d*x)/2))*cos(4*c + 4*d*x)*15i)/32 - (B*a^3*atan((sin(c/2 + (d*x)/2 
)*1i)/cos(c/2 + (d*x)/2))*cos(2*c + 2*d*x)*5i)/2 - (B*a^3*atan((sin(c/2 + 
(d*x)/2)*1i)/cos(c/2 + (d*x)/2))*cos(4*c + 4*d*x)*5i)/8 + C*a^3*atan(sin(c 
/2 + (d*x)/2)/cos(c/2 + (d*x)/2))*cos(2*c + 2*d*x) + (C*a^3*atan(sin(c/2 + 
 (d*x)/2)/cos(c/2 + (d*x)/2))*cos(4*c + 4*d*x))/4 - (C*a^3*atan((sin(c/2 + 
 (d*x)/2)*1i)/cos(c/2 + (d*x)/2))*cos(2*c + 2*d*x)*7i)/2 - (C*a^3*atan((si 
n(c/2 + (d*x)/2)*1i)/cos(c/2 + (d*x)/2))*cos(4*c + 4*d*x)*7i)/8)/(d*(cos(2 
*c + 2*d*x)/2 + cos(4*c + 4*d*x)/8 + 3/8))